Airfoil Optimization in Propeller Slipstreams Using Generative Adversarial Networks

Ziyu Li, Mingchao Yang, Zhengping Wang, Wenling Wei, Zhou Zhou

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

This study explores airfoil design optimization in propeller slipstreams, leveraging the capabilities of Generative Adversarial Networks (GANs). With advancements in AI, the research integrates a GAN-based airfoil generation algorithm, emphasizing its benefits in input dimension reduction and curve quality. Using Information Maximizing Generative Adversarial Networks (infoGAN), essential airfoil features are extracted, showcasing the network’s inferential prowess. The focus then shifts to propeller-wing coupled optimization, where a 6% drag reduction was achieved using rigorous validation techniques. The paper introduces a novel method, substituting expert feedback with GAN’s discriminator in airfoil optimization. This approach not only meets design point criteria but also enhances robustness and applicability, aligning with real-world engineering scenarios. In summary, this work presents a novel approach to airfoil design in propeller slipstreams through GANs.

源语言英语
主期刊名2023 Asia-Pacific International Symposium on Aerospace Technology, APISAT 2023, Proceedings - Volume II
编辑Song Fu
出版商Springer Science and Business Media Deutschland GmbH
1412-1424
页数13
ISBN(印刷版)9789819740093
DOI
出版状态已出版 - 2024
活动Asia-Pacific International Symposium on Aerospace Technology, APISAT 2023 - Lingshui, 中国
期限: 16 10月 202318 10月 2023

出版系列

姓名Lecture Notes in Electrical Engineering
1051 LNEE
ISSN(印刷版)1876-1100
ISSN(电子版)1876-1119

会议

会议Asia-Pacific International Symposium on Aerospace Technology, APISAT 2023
国家/地区中国
Lingshui
时期16/10/2318/10/23

指纹

探究 'Airfoil Optimization in Propeller Slipstreams Using Generative Adversarial Networks' 的科研主题。它们共同构成独一无二的指纹。

引用此