Agarics-derived porous Fe/C material activated by ZnCl2 and its enhanced microwave absorption performance

Jinbu Su, Yuyi Xu, Rui Yang, Xuli Lin, Yunong Xie, Heng Zhao, Chenyi Shi, Xinyu Dong, Chengbing Wang, Yuchang Qing, Fa Luo

科研成果: 期刊稿件文章同行评审

8 引用 (Scopus)

摘要

Biomass-derived carbon materials retain the unique porous structure of biological raw materials and have environmental advantages, making them a popular choice for electromagnetic microwave absorption research. The microwave absorption performance of biomass-derived carbon materials is largely influenced by their pore structure, which can be controlled by chemical activators. In this study, ZnCl2 was chosen as the activator and de-impregnated agarics with Fe(NO3)3·9 H2O for pretreatment. The Fe(NO3)3·9 H2O can provide magnetic Fe particles for the material to enhance the magnetic loss ability. And the weakly acidic ZnCl2 can avoid the pollution of the environment, and its dehydration and dehydroxylation properties can release the hydrogen and oxygen in the biomass char material in the form of water vapor, and release the hydrogen and oxygen in the biomass carbon material in the form of water vapor, and form a porous structure. porous structure. In addition, ZnCl2 will be converted to ZnO during the activation process, and the removal of ZnO by acid washing will increase the internal pore volume, form a conductive network, and form a rich three-dimensional interconnected pore structure. The pretreated samples were vacuum carbonized at high temperature to obtain agarics-derived porous Fe/C material, which is an excellent lightweight and high-performance microwave absorbing material. The resulting material has a wider absorption bandwidth and improved microwave absorption performance. At a thickness of 2.55 mm and a frequency of 8.31 GHz, the RLmin of Fe/C material is −51.14 dB. Furthermore, at a thickness of 2.13 mm, it has an effective absorption bandwidth of 3.63 GHz, covering most of the X-band.

源语言英语
文章编号134964
期刊Colloids and Surfaces A: Physicochemical and Engineering Aspects
701
DOI
出版状态已出版 - 20 11月 2024

指纹

探究 'Agarics-derived porous Fe/C material activated by ZnCl2 and its enhanced microwave absorption performance' 的科研主题。它们共同构成独一无二的指纹。

引用此