TY - GEN
T1 - Advanced film cooling performance of a y-shaped hole with inner crossflow
AU - Luo, Jianxia
AU - Liu, Cunliang
AU - Zhu, Huiren
N1 - Publisher Copyright:
Copyright © 2018 ASME.
PY - 2018
Y1 - 2018
N2 - Film cooling performances of three film holes have been numerical researched in this paper, including a lateral inclined cylindrical hole, a fan-shaped hole and a y-shaped hole. The simulation is computed by the commercial software Fluent based on Reynolds Averaged Navier-Stokes (RANS) equations and realizable k-ϵ turbulence model with enhanced wall treatment. The y-shaped hole is a novel film hole developed from the lateral inclined cylindrical hole. With inner crossflow, the jet of the lateral inclined cylindrical hole performs to be two streams as a result of the helical motion in the hole. Accordingly, the hole exit was optimized with two expansions: one is expanded along the lateral inclined direction and the other is expanded along the mainstream flow direction. The lateral inclined cylindrical hole with two expansions at the exit is named the y-shaped hole. Compared to the fundamental lateral inclined cylindrical hole, the y-shaped hole has different counter-rotating vortices and much better film coverage. Experiments have been conducted to test the film cooling performance of the y-shaped hole. Compared to the lateral inclined cylindrical hole, much higher film cooling effectiveness has been measured in the y-shaped hole as a result of the enhanced lateral film coverage and the weakened film dissipation in the streamwise direction. The film performance of the y-shaped hole rises with the increase of the blowing ratio. At M=2.0, the film of the y-shaped hole keeps close to the wall while the film of the lateral inclined cylindrical hole is completely lifted up, resulting in the increase of the area average film cooling effectiveness up to 128.7%.
AB - Film cooling performances of three film holes have been numerical researched in this paper, including a lateral inclined cylindrical hole, a fan-shaped hole and a y-shaped hole. The simulation is computed by the commercial software Fluent based on Reynolds Averaged Navier-Stokes (RANS) equations and realizable k-ϵ turbulence model with enhanced wall treatment. The y-shaped hole is a novel film hole developed from the lateral inclined cylindrical hole. With inner crossflow, the jet of the lateral inclined cylindrical hole performs to be two streams as a result of the helical motion in the hole. Accordingly, the hole exit was optimized with two expansions: one is expanded along the lateral inclined direction and the other is expanded along the mainstream flow direction. The lateral inclined cylindrical hole with two expansions at the exit is named the y-shaped hole. Compared to the fundamental lateral inclined cylindrical hole, the y-shaped hole has different counter-rotating vortices and much better film coverage. Experiments have been conducted to test the film cooling performance of the y-shaped hole. Compared to the lateral inclined cylindrical hole, much higher film cooling effectiveness has been measured in the y-shaped hole as a result of the enhanced lateral film coverage and the weakened film dissipation in the streamwise direction. The film performance of the y-shaped hole rises with the increase of the blowing ratio. At M=2.0, the film of the y-shaped hole keeps close to the wall while the film of the lateral inclined cylindrical hole is completely lifted up, resulting in the increase of the area average film cooling effectiveness up to 128.7%.
UR - http://www.scopus.com/inward/record.url?scp=85054082978&partnerID=8YFLogxK
U2 - 10.1115/GT2018-75992
DO - 10.1115/GT2018-75992
M3 - 会议稿件
AN - SCOPUS:85054082978
SN - 9780791851104
T3 - Proceedings of the ASME Turbo Expo
BT - Heat Transfer
PB - American Society of Mechanical Engineers (ASME)
T2 - ASME Turbo Expo 2018: Turbomachinery Technical Conference and Exposition, GT 2018
Y2 - 11 June 2018 through 15 June 2018
ER -