Adaptive semi-supervised learning with discriminative least squares regression

Minnan Luo, Lingling Zhang, Feiping Nie, Xiaojun Chang, Buyue Qian, Qinghua Zheng

科研成果: 书/报告/会议事项章节会议稿件同行评审

19 引用 (Scopus)

摘要

Semi-supervised learning plays a significant role in multi-class classification, where a small number of labeled data are more deterministic while substantial unlabeled data might cause large uncertainties and potential threats. In this paper, we distinguish the label fitting of labeled and unlabeled training data through a probabilistic vector with an adaptive parameter, which always ensures the significant importance of labeled data and characterizes the contribution of unlabeled instance according to its uncertainty. Instead of using traditional least squares regression (LSR) for classification, we develop a new discriminative LSR by equipping each label with an adjustment vector. This strategy avoids incorrect penalization on samples that are far away from the boundary and simultaneously facilitates multi-class classification by enlarging the geometrical distance of instances belonging to different classes. An efficient alternative algorithm is exploited to solve the proposed model with closed form solution for each updating rule. We also analyze the convergence and complexity of the proposed algorithm theoretically. Experimental results on several benchmark datasets demonstrate the effectiveness and superiority of the proposed model for multi-class classification tasks.

源语言英语
主期刊名26th International Joint Conference on Artificial Intelligence, IJCAI 2017
编辑Carles Sierra
出版商International Joint Conferences on Artificial Intelligence
2421-2427
页数7
ISBN(电子版)9780999241103
DOI
出版状态已出版 - 2017
活动26th International Joint Conference on Artificial Intelligence, IJCAI 2017 - Melbourne, 澳大利亚
期限: 19 8月 201725 8月 2017

出版系列

姓名IJCAI International Joint Conference on Artificial Intelligence
0
ISSN(印刷版)1045-0823

会议

会议26th International Joint Conference on Artificial Intelligence, IJCAI 2017
国家/地区澳大利亚
Melbourne
时期19/08/1725/08/17

指纹

探究 'Adaptive semi-supervised learning with discriminative least squares regression' 的科研主题。它们共同构成独一无二的指纹。

引用此