Adaptive quantile low-rank matrix factorization

Shuang Xu, Chunxia Zhang, Jiangshe Zhang

科研成果: 期刊稿件文章同行评审

11 引用 (Scopus)

摘要

Low-rank matrix factorization (LRMF) has received much popularity owing to its successful applications in both computer vision and data mining. By assuming noise to come from a Gaussian, Laplace or mixture of Gaussian distributions, significant efforts have been made on optimizing the (weighted) L1 or L2-norm loss between an observed matrix and its bilinear factorization. However, the type of noise distribution is generally unknown in real applications and inappropriate assumptions will inevitably deteriorate the behavior of LRMF. On the other hand, real data are often corrupted by skew rather than symmetric noise. To tackle this problem, this paper presents a novel LRMF model called AQ-LRMF by modeling noise with a mixture of asymmetric Laplace distributions. An efficient algorithm based on the expectation-maximization (EM) algorithm is also offered to estimate the parameters involved in AQ-LRMF. The AQ-LRMF model possesses the advantage that it can approximate noise well no matter whether the real noise is symmetric or skew. The core idea of AQ-LRMF lies in solving a weighted L1 problem with weights being learned from data. The experiments conducted on synthetic and real data sets show that AQ-LRMF outperforms several state-of-the-art techniques. Furthermore, AQ-LRMF also has the superiority over the other algorithms in terms of capturing local structural information contained in real images.

源语言英语
文章编号107310
期刊Pattern Recognition
103
DOI
出版状态已出版 - 7月 2020
已对外发布

指纹

探究 'Adaptive quantile low-rank matrix factorization' 的科研主题。它们共同构成独一无二的指纹。

引用此