AdaFlow: Non-blocking Inference with Heterogeneous Multi-modal Mobile Sensor Data

Fengmin Wu, Sicong Liu, Bin Guo, Xiaocheng Li, Yuan Gao, Zhiwen Yu

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Multi-modal deep learning offer conceptual advantages by integrating information from different vantage points. However, data flow blocking and corruption due to modalities asymmetric which make exist methods can hardly balance latency and accuracy still pose many challenges. To address these challenges, this paper proposes AdaFlow to establish a multi-modal mapping mechanism using an affinity matrix, achieving non-blocking data flow in multi-modal systems.

源语言英语
主期刊名Proceedings - 2024 IEEE Coupling of Sensing and Computing in AIoT Systems, CSCAIoT 2024
出版商Institute of Electrical and Electronics Engineers Inc.
8-9
页数2
ISBN(电子版)9798350363388
DOI
出版状态已出版 - 2024
活动2024 IEEE Coupling of Sensing and Computing in AIoT Systems, CSCAIoT 2024 - Hong Kong, 中国
期限: 13 5月 2024 → …

出版系列

姓名Proceedings - 2024 IEEE Coupling of Sensing and Computing in AIoT Systems, CSCAIoT 2024

会议

会议2024 IEEE Coupling of Sensing and Computing in AIoT Systems, CSCAIoT 2024
国家/地区中国
Hong Kong
时期13/05/24 → …

指纹

探究 'AdaFlow: Non-blocking Inference with Heterogeneous Multi-modal Mobile Sensor Data' 的科研主题。它们共同构成独一无二的指纹。

引用此