TY - GEN
T1 - Acm
T2 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Annual Conference on Innovative Applications of Artificial Intelligence, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
AU - Yuan, Yuan
AU - Xiong, Zhitong
AU - Wang, Qi
N1 - Publisher Copyright:
© 2019, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
PY - 2019
Y1 - 2019
N2 - RGB image classification has achieved significant performance improvement with the resurge of deep convolutional neural networks. However, mono-modal deep models for RGB image still have several limitations when applied to RGB-D scene recognition. 1) Images for scene classification usually contain more than one typical object with flexible spatial distribution, so the object-level local features should also be considered in addition to global scene representation. 2) Multi-modal features in RGB-D scene classification are still under-utilized. Simply combining these modal-specific features suffers from the semantic gaps between different modalities. 3) Most existing methods neglect the complex relationships among multiple modality features. Considering these limitations, this paper proposes an adaptive cross-modal (ACM) feature learning framework based on graph convolutional neural networks for RGB-D scene recognition. In order to make better use of the modal-specific cues, this approach mines the intra-modality relationships among the selected local features from one modality. To leverage the multi-modal knowledge more effectively, the proposed approach models the inter-modality relationships between two modalities through the cross-modal graph (CMG). We evaluate the proposed method on two public RGB-D scene classification datasets: SUN-RGBD and NYUD V2, and the proposed method achieves state-of-the-art performance.
AB - RGB image classification has achieved significant performance improvement with the resurge of deep convolutional neural networks. However, mono-modal deep models for RGB image still have several limitations when applied to RGB-D scene recognition. 1) Images for scene classification usually contain more than one typical object with flexible spatial distribution, so the object-level local features should also be considered in addition to global scene representation. 2) Multi-modal features in RGB-D scene classification are still under-utilized. Simply combining these modal-specific features suffers from the semantic gaps between different modalities. 3) Most existing methods neglect the complex relationships among multiple modality features. Considering these limitations, this paper proposes an adaptive cross-modal (ACM) feature learning framework based on graph convolutional neural networks for RGB-D scene recognition. In order to make better use of the modal-specific cues, this approach mines the intra-modality relationships among the selected local features from one modality. To leverage the multi-modal knowledge more effectively, the proposed approach models the inter-modality relationships between two modalities through the cross-modal graph (CMG). We evaluate the proposed method on two public RGB-D scene classification datasets: SUN-RGBD and NYUD V2, and the proposed method achieves state-of-the-art performance.
UR - http://www.scopus.com/inward/record.url?scp=85089216898&partnerID=8YFLogxK
U2 - 10.1609/aaai.v33i01.33019176
DO - 10.1609/aaai.v33i01.33019176
M3 - 会议稿件
AN - SCOPUS:85089216898
T3 - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
SP - 9176
EP - 9184
BT - 33rd AAAI Conference on Artificial Intelligence, AAAI 2019, 31st Innovative Applications of Artificial Intelligence Conference, IAAI 2019 and the 9th AAAI Symposium on Educational Advances in Artificial Intelligence, EAAI 2019
PB - AAAI press
Y2 - 27 January 2019 through 1 February 2019
ER -