A variational Bayesian approach to direction finding of correlated targets using coprime array

Jie Yang, Yixin Yang

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

In this paper, we develop a sparsity-aware algorithm for direction-of-arrival (DOA) estimation of correlated targets in the context of coprime array processing. The idea is to iteratively interpolate the observed data to a virtual nonuniform linear array (NLA) in order to raise the degrees of freedom (DOF). We derive the estimation procedures using variational inference for fully Bayesian estimation, where the current parameter estimates are used to interpolate the observed data better and thus increase the likelihood of the next parameter estimates. The novelties of our method lies in its capacity of detecting more correlated sources than the number of physical sensors. Simulated data from coprime arrays are used to illustrate the superior performance of the proposed approach as compared with other state-of-the-art compressed sensing reconstruction algorithms.

源语言英语
主期刊名2020 IEEE 11th Sensor Array and Multichannel Signal Processing Workshop, SAM 2020
出版商IEEE Computer Society
ISBN(电子版)9781728119465
DOI
出版状态已出版 - 6月 2020
活动11th IEEE Sensor Array and Multichannel Signal Processing Workshop, SAM 2020 - Hangzhou, 中国
期限: 8 6月 202011 6月 2020

出版系列

姓名Proceedings of the IEEE Sensor Array and Multichannel Signal Processing Workshop
2020-June
ISSN(电子版)2151-870X

会议

会议11th IEEE Sensor Array and Multichannel Signal Processing Workshop, SAM 2020
国家/地区中国
Hangzhou
时期8/06/2011/06/20

指纹

探究 'A variational Bayesian approach to direction finding of correlated targets using coprime array' 的科研主题。它们共同构成独一无二的指纹。

引用此