A Unified Deep Biological Sequence Representation Learning with Pretrained Encoder-Decoder Model

Hai Cheng Yi, Zhu Hong You, Xiao Rui Su, De Shuang Huang, Zhen Hao Guo

科研成果: 书/报告/会议事项章节会议稿件同行评审

1 引用 (Scopus)

摘要

Machine learning methods are increasingly being applied to model and predict biomolecular interactions, while efficient feature representation plays a vital role. To this end, a unified biological sequence deep representation learning framework BioSeq2vec is proposed to extract discriminative features of any type of biological sequence. For arbitrary-length sequence input, the BioSeq2vec produces fixed-length efficient feature representation, which can be applied to various learning models. The performance of BioSeq2vec is evaluated on lncRNA-protein interaction prediction tasks. Experimental results reveal the superior performance of BioSeq2vec in biological sequence feature representation and broad prospects in various genome informatics and computational biology studies.

源语言英语
主期刊名Intelligent Computing Theories and Application - 16th International Conference, ICIC 2020, Proceedings
编辑De-Shuang Huang, Kang-Hyun Jo
出版商Springer Science and Business Media Deutschland GmbH
339-347
页数9
ISBN(印刷版)9783030608019
DOI
出版状态已出版 - 2020
已对外发布
活动16th International Conference on Intelligent Computing, ICIC 2020 - Bari , 意大利
期限: 2 10月 20205 10月 2020

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
12464 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议16th International Conference on Intelligent Computing, ICIC 2020
国家/地区意大利
Bari
时期2/10/205/10/20

指纹

探究 'A Unified Deep Biological Sequence Representation Learning with Pretrained Encoder-Decoder Model' 的科研主题。它们共同构成独一无二的指纹。

引用此