@inproceedings{ee9416a0227a4d5590e5a6ba9317d1ed,
title = "A study on spiral bevel gear fault detection using artificial neural networks and wavelet transform",
abstract = "Based on normal and defective gears of spiral bevel gear pair test, a study is represented to develop the performance of gear fault detection with artificial neural networks and wavelet transform. In order to research the relevant studies of gear failures, a gear fault test rig is designed and constructed, with which vibration test are processed for collecting the signals of a gearbox from this rig. The noise is removed from the original time-domain vibration signals by application of wavelet analysis threshold technique. The extracted energy features from those preprocessed signals are implemented by the wavelet transform, which are used as inputs to the artificial neural networks for two-pattern (normal or fault) recognition. The results show that the represented recognition accuracy of the ANN and WT method for gear fault diagnosis is 100% that is much higher compared with the results of application of ANN separately.",
keywords = "Artificial neural networks, Fault detection, Spiral bevel gear, Wavelet transform",
author = "Bibo Fu and Zongde Fang",
year = "2011",
doi = "10.4028/www.scientific.net/AMM.86.214",
language = "英语",
isbn = "9783037852330",
series = "Applied Mechanics and Materials",
pages = "214--217",
booktitle = "Advances in Power Transmission Science and Technology",
note = "International Conference on Power Transmission, ICPT 2011 ; Conference date: 25-10-2011 Through 29-10-2011",
}