摘要
The widespread growth of the Internet of Things (IoT) has significantly increased the need for robust data interaction mechanisms, making data security a critical challenge. Blockchain technology, characterized by its decentralized architecture, presents an innovative solution for managing data within IoT ecosystems. A collaborative cloud-edge framework emerges as a dependable option for deploying IoT blockchains; however, energy-efficient hardware support on the edge remains insufficient. To resolve this issue, this study introduces a low-power System on Chip (SoC) integrated with a specialized secure coprocessor to handle data on-chain processes. To mitigate physical-level security risks, the SoC incorporates a trusted computing architecture based on dual RISC-V cores. Experimental results using an FPGA platform reveal that the proposed SoC achieves a 12.1-fold performance enhancement for complete data on-chain processing tasks compared to the high-performance Intel i9-13950HX CPU, with total power consumption limited to just 0.579 W.
源语言 | 英语 |
---|---|
文章编号 | 106697 |
期刊 | Microelectronics Journal |
卷 | 161 |
DOI | |
出版状态 | 已出版 - 7月 2025 |