A rank-constrained clustering algorithm with adaptive embedding

Shenfei Pei, Feiping Nie, Rong Wang, Xuelong Li

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Most spectral clustering algorithms obtain firstly the embedding based on the similarity matrix of the input data and then discretize the embedding to get the final clustering result. So, their performance is greatly affected by the noise of the similarity matrix, and the two-step strategy may lead to a suboptimal result. In this article, a novel Rank-Constrained clustering algorithm with Adaptive Embedding called RCAE is proposed, where the spectral embedding and the clustering structure are learned simultaneously, so, the influence of noise on performance is greatly reduced. In addition, a rank constraint is adopted in our model, thus, the connectivity matrix with exactly c (the number of clusters to construct) connected components can be learned, therefore, the final clustering result can be obtained according to the connected components. Experiments on several benchmark datasets validate the superiority of the proposed methods, compared to the several state-of-the-art clustering algorithms [GitHub].

源语言英语
主期刊名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
2845-2849
页数5
ISBN(电子版)9781728176055
DOI
出版状态已出版 - 2021
活动2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, 加拿大
期限: 6 6月 202111 6月 2021

出版系列

姓名ICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
2021-June
ISSN(印刷版)1520-6149

会议

会议2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021
国家/地区加拿大
Virtual, Toronto
时期6/06/2111/06/21

指纹

探究 'A rank-constrained clustering algorithm with adaptive embedding' 的科研主题。它们共同构成独一无二的指纹。

引用此