摘要
An analytical solution for the responses of composite laminates under oblique low-velocity impacts is presented for a cross-ply, orthotropic, and rectangular plate under oblique low-velocity impacts. The plate is under simply-supported edge conditions, and the dynamic displacement field is expressed in a mixed form by in-plane double Fourier series and cubic polynomials through the thickness as 12 variables for each layer. A system of modified Lagrange equations is derived with all interface constraints. The Hertz and Cattaneo-Mindlin theories are used to solve for the normal and tangential contact forces during the impacts. By further discretizing in the time domain, the oblique impact problem is solved iteratively. While the numerical results clearly show the influence of impact velocity, stacking sequence, mechanical parameters, and geometric parameters, the proposed analytical approach could serve as a theoretical basis for the laminate analysis and design when it is under low-velocity impacts.
源语言 | 英语 |
---|---|
页(从-至) | 2165-2182 |
页数 | 18 |
期刊 | Applied Mathematics and Mechanics (English Edition) |
卷 | 45 |
期 | 12 |
DOI | |
出版状态 | 已出版 - 12月 2024 |