A novel similarity learning method via relative comparison for content-based medical image retrieval

Wei Huang, Peng Zhang, Min Wan

科研成果: 期刊稿件文章同行评审

9 引用 (Scopus)

摘要

Nowadays, the huge volume of medical images represents an enormous challenge towards health-care organizations, as it is often hard for clinicians and researchers to manage, access, and share the image database easily. Content-based medical image retrieval (CBMIR) techniques are employed to facilitate the above process. It is known that a few concrete factors, including visual attributes extracted from images, measures encoding the similarity between images, user interaction, etc. play important roles in determining the retrieval performance. This paper concentrates on the similarity learning problem of CBMIR. A novel similarity learning paradigm is proposed via relative comparison, and a large database composed of 5,000 images is utilized to evaluate the retrieval performance. Extensive experimental results and comprehensive statistical analysis demonstrate the superiority of adopting the newly introduced learning paradigm, compared with several conventional supervised and semi-supervised similarity learning methods, in the presented CBMIR application.

源语言英语
页(从-至)850-865
页数16
期刊Journal of Digital Imaging
26
5
DOI
出版状态已出版 - 10月 2013

指纹

探究 'A novel similarity learning method via relative comparison for content-based medical image retrieval' 的科研主题。它们共同构成独一无二的指纹。

引用此