摘要
An economical and highly uranium extraction from seawater remains a crucial task for energy sources and environmental safety. Aiming for improving the mass transfer rate of uranium from seawater, a new synthetic strategy was adopted to synthesize two-dimensional-open channel microporous bioadsorbent for uranium extraction from seawater. Herein, a vapor phase modification approach was adopted to graft divinylbenzene (DVB), and polyacrylonitrile (AN) onto the surfaces of microporous frameworks via a free radical polymerization method. The postsynthetic functionalization was carried out by hydrothermal process, where amidoxime groups are structure-directing agents to trap uranium. Furthermore, amidoxime groups not only enhanced hydrophilicity but also adjusts adsorbents pKa. AO-Fc faces minimum interference of competing ions and achieves a high uranium adsorption capacity of 8.57 ± 0.02 and 409 ± 1 mg/g in seawater and simulated solution. Despite its stable structure, AO-Fc exhibits a long life span and negligible weight loss revealed AO-Fc could be applied as a potential adsorbent for radionuclides.
源语言 | 英语 |
---|---|
文章编号 | e17884 |
期刊 | AIChE Journal |
卷 | 68 |
期 | 12 |
DOI | |
出版状态 | 已出版 - 12月 2022 |