TY - JOUR
T1 - A novel linear uncertainty propagation method for nonlinear dynamics with interval process
AU - Zhang, Licong
AU - Li, Chunna
AU - Su, Hua
AU - Wang, Xiaoding
AU - Gong, Chunlin
N1 - Publisher Copyright:
© 2022, The Author(s), under exclusive licence to Springer Nature B.V.
PY - 2023/3
Y1 - 2023/3
N2 - Interval process is a preferable model for time-varying uncertainty propagation of dynamic systems when only the range of uncertainties can be obtained. However, for nonlinear systems, except for Monte Carlo (MC) simulation, there are still few efficient uncertainty propagation methods under the interval process model. This paper develops a non-intrusive and semi-analytical uncertainty propagation method, named the “convex model linearization method (CMLM),” by constructing a linearization formulation of a nonlinear system in a non-probabilistic sense. First, the criterion to evaluate the difference between the original system and the linearization formulation is derived, represented by the discrepancy of middle point, radius and correlations of response. By minimizing these three parameters, the coefficients of linear equations will be optimized to obtain the linearization formulation of the original system. Then, analytical equations are built to calculate uncertainty response under the interval process, without time-consuming analysis of the original system. To further improve the efficiency of the linearization process, Chebyshev polynomial is introduced to approximate the nonlinear dynamic analysis. Two numerical examples of duffing oscillators and vehicle rides are set to test the proposed CMLM. Compared to the MC method, with comparable uncertainty response precision, the CMLM just needs 1–10% times of dynamic analyses of the nonlinear system. Furthermore, a practical launch vehicle ascent trajectory problem with black-box dynamics is solved by, respectively, the CMLM and MC method. The results verify the capacity of the CMLM to deal with black-box problems and show that the CMLM performs better in terms of accuracy, efficiency and robustness.
AB - Interval process is a preferable model for time-varying uncertainty propagation of dynamic systems when only the range of uncertainties can be obtained. However, for nonlinear systems, except for Monte Carlo (MC) simulation, there are still few efficient uncertainty propagation methods under the interval process model. This paper develops a non-intrusive and semi-analytical uncertainty propagation method, named the “convex model linearization method (CMLM),” by constructing a linearization formulation of a nonlinear system in a non-probabilistic sense. First, the criterion to evaluate the difference between the original system and the linearization formulation is derived, represented by the discrepancy of middle point, radius and correlations of response. By minimizing these three parameters, the coefficients of linear equations will be optimized to obtain the linearization formulation of the original system. Then, analytical equations are built to calculate uncertainty response under the interval process, without time-consuming analysis of the original system. To further improve the efficiency of the linearization process, Chebyshev polynomial is introduced to approximate the nonlinear dynamic analysis. Two numerical examples of duffing oscillators and vehicle rides are set to test the proposed CMLM. Compared to the MC method, with comparable uncertainty response precision, the CMLM just needs 1–10% times of dynamic analyses of the nonlinear system. Furthermore, a practical launch vehicle ascent trajectory problem with black-box dynamics is solved by, respectively, the CMLM and MC method. The results verify the capacity of the CMLM to deal with black-box problems and show that the CMLM performs better in terms of accuracy, efficiency and robustness.
KW - Black-box problem
KW - Interval process
KW - Linearization method
KW - Nonlinear dynamics
KW - Time-varying uncertainty propagation
UR - http://www.scopus.com/inward/record.url?scp=85142301606&partnerID=8YFLogxK
U2 - 10.1007/s11071-022-08084-0
DO - 10.1007/s11071-022-08084-0
M3 - 文章
AN - SCOPUS:85142301606
SN - 0924-090X
VL - 111
SP - 4425
EP - 4450
JO - Nonlinear Dynamics
JF - Nonlinear Dynamics
IS - 5
ER -