A Novel Deep Learning Method for Underwater Target Recognition Based on Res-Dense Convolutional Neural Network with Attention Mechanism

Anqi Jin, Xiangyang Zeng

科研成果: 期刊稿件文章同行评审

26 引用 (Scopus)

摘要

Long-range underwater targets must be accurately and quickly identified for both defense and civil purposes. However, the performance of an underwater acoustic target recognition (UATR) system can be significantly affected by factors such as lack of data and ship working conditions. As the marine environment is very complex, UATR relies heavily on feature engineering, and manually extracted features are occasionally ineffective in the statistical model. In this paper, an end-to-end model of UATR based on a convolutional neural network and attention mechanism is proposed. Using raw time domain data as input, the network model combines residual neural networks and densely connected convolutional neural networks to take full advantage of both. Based on this, a channel attention mechanism and a temporal attention mechanism are added to extract the information in the channel dimension and the temporal dimension. After testing the measured four types of ship-radiated noise dataset in experiments, the results show that the proposed method achieves the highest correct recognition rate of 97.69% under different working conditions and outperforms other deep learning methods.

源语言英语
文章编号69
期刊Journal of Marine Science and Engineering
11
1
DOI
出版状态已出版 - 1月 2023

指纹

探究 'A Novel Deep Learning Method for Underwater Target Recognition Based on Res-Dense Convolutional Neural Network with Attention Mechanism' 的科研主题。它们共同构成独一无二的指纹。

引用此