A NON-GPU INSTANCE LEVEL SEMANTIC ACQUISITION METHOD for COMPUTING RESOURCES LIMITED SCENARIOS

Li Qianlong, Zhu Zhanxia, Zhang Zhihao, Liang Junwu, Xu Yanwen, Wang Bo, Yang Shuheng

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

As the space mission is becoming more and more complex and the environment faced by the space mission is increasing more and more harsh, many space missions have to rely on autonomous robots to assist human beings to full the tasks. Vision-based simultaneous localization and mapping (SLAM) is the core technology of autonomous robot to achieve localization and navigation in unknown environment, and it has always been a research hotspot. However, the traditional visual SLAM only enables robots to understand the surroundings from the geometric respect, so it is difficult for robots to implement higher-level autonomous tasks. The vision-based instance level semantic SLAM can not only improve the accuracy and robustness of the traditional visual SLAM, but also make robots recognize the surrounding environment from two aspects of geometry and instance level semantic objects, thus improving the autonomy of the robot. At present, there is only a small number of works related to instance level semantic SLAM and these works require high energy consumption Graphic Processing Units (GPUs) to provide computing resources to extract semantic information from the images, which greatly limits some space mission scenarios, such as lunar base service robots and robotic surface operation missions which have energy consumption and volume constraints. To solve this problem, this paper proposes an instance segmentation method based on the combination of edge segmentation and lightweight semantic segmentation neural network, which avoids the object candidate box regression process that consumes too much computing resources. In particular, a binary edge map is generated first via normal edge analysis method to serve as the masks of objects in the images, which will omit the regression process of object candidate box. Then, the masks are used to intersect with corresponding semantic segmentation results. Finally, instance level semantic segmentation is realized. In the scope of my knowledge, this is the first approach which can achieve interactive rate instance level semantic information acquisition in CPU hardware environment while merely reducing a small amount of segment accuracy respect to GPU based methods. Therefore, it can provide an effective solution for application scenarios with computing resources and volume constraints. In addition, the ac-curacy and speed of the segmentation method can meet the need of environmental modelling for mobile robot SLAM.

源语言英语
主期刊名IAF Space Exploration Symposium 2021 - Held at the 72nd International Astronautical Congress, IAC 2021
出版商International Astronautical Federation, IAF
ISBN(电子版)9781713842965
出版状态已出版 - 2021
活动IAF Space Exploration Symposium 2021 at the 72nd International Astronautical Congress, IAC 2021 - Dubai, 阿拉伯联合酋长国
期限: 25 10月 202129 10月 2021

出版系列

姓名Proceedings of the International Astronautical Congress, IAC
A3
ISSN(印刷版)0074-1795

会议

会议IAF Space Exploration Symposium 2021 at the 72nd International Astronautical Congress, IAC 2021
国家/地区阿拉伯联合酋长国
Dubai
时期25/10/2129/10/21

指纹

探究 'A NON-GPU INSTANCE LEVEL SEMANTIC ACQUISITION METHOD for COMPUTING RESOURCES LIMITED SCENARIOS' 的科研主题。它们共同构成独一无二的指纹。

引用此