摘要
A heterostructure engineered, multiscale ion-sieving separator with desired macro‑meso-molecular pores that can render selective Zn2+ permeability and homogeneous Zn2+ distribution at the separator-electrode interface is designed to achieve durable aqueous Zn-ion batteries. The proposed separator is fabricated by stacking an intermediate nanocellulose layer and a poly(3,4-ethylenedioxythiophene):polystyrene sulfonate (PEDOT:PSS) upper layer on a glass fiber substrate, wherein the nanocellulose layer contains uniform mesopores favoring a homogeneous Zn2+ flux and endowing the attainment of a PEDOT:PSS layer. While the PEDOT:PSS layer features intrinsic ionic/electronic conductivity and rich sulfonate groups enabling uniform electrical field distribution and inhibiting anions migration. The combination of mesoporous nanocellulose and cation-permeable PEDOT:PSS used in the heterostructure separator yields a high ionic transference number and fast Zn2+ desolvation kinetics. This unique separator enables highly compact and dendrite-free Zn deposition at 4 mA cm−2/8 mAh cm−2, and sustains the symmetric Zn||Zn cell over 400 h at 10 mA cm−2/4 mAh cm−2. Such advantages bring remarkable reversibility to full AZBs with high I2 mass loading cathodes of 13.0 mg cm−2, delivering a discharge capacity of 172.1 mAh g−1 after 1000 cycles. This multiscale ion-sieving design principle provides new insight into separator engineering for ultra-stable Zn metal batteries.
源语言 | 英语 |
---|---|
页(从-至) | 557-567 |
页数 | 11 |
期刊 | Energy Storage Materials |
卷 | 57 |
DOI | |
出版状态 | 已出版 - 3月 2023 |