A multi-scale modeling framework for impact damage simulation of triaxially braided composites

Zhenqiang Zhao, Haoyuan Dang, Chao Zhang, Gun Jin Yun, Yulong Li

科研成果: 期刊稿件文章同行评审

114 引用 (Scopus)

摘要

A multi-scale simulation framework based on finite element method is developed to model the impact failure behavior of triaxially braided composite. The model integrates micromechanical model, meso-mechanical model and macro subcell model for the purpose of determining effective properties of fiber tows, estimating effective properties of subcell components, and simulating impact failure behavior of a braided composite structure, respectively. The meso-mechanical model compares excellently with experiments for mechanical behavior of both single-layer and six-layer specimens under quasi-static loading conditions. A new meso-macro homogenization approach is proposed to estimate effective properties of subcell components with consideration of geometry continuity effect. The subcell model is validated against experiments and utilized to simulate the high-speed impact behavior of a composite panel. The results of the subcell impact model compare well with experimental failure phenomena. The presented multi-scale modeling approach demonstrates its feasibility for impact analysis and design of braided composite structures.

源语言英语
页(从-至)113-125
页数13
期刊Composites Part A: Applied Science and Manufacturing
110
DOI
出版状态已出版 - 7月 2018

指纹

探究 'A multi-scale modeling framework for impact damage simulation of triaxially braided composites' 的科研主题。它们共同构成独一无二的指纹。

引用此