TY - JOUR
T1 - A modified time reversal method for guided wave detection of bolt loosening in simulated thermal protection system panels
AU - Wu, Guan nan
AU - Xu, Chao
AU - Du, Fei
AU - Zhu, Wei dong
N1 - Publisher Copyright:
Copyright © 2018 Guan-nan Wu et al.
PY - 2018
Y1 - 2018
N2 - In this work, a modified time reversal method is proposed for guided wave detection and localizing loosened bolt in a complicated multibolt-jointed structure. Different from the traditional time reversal guided wave method, the response signal due to a tone burst input received at the healthy state is time reversed and recorded as a standard reemitting signal. In the detection process, this recorded standard signal is used for all damage cases to yield time reversal-focalized reconstruction signals. This largely improves the sensitivity of the focalized signal to damage state. In this paper, the peak amplitude of the focalized wave packet in the reconstructed signal is calculated and utilized as tightness index. By bonding PZT transducers at different joint locations inside the structure, multiple tightness indices, where each tightness index presents the correlation between the current joint condition to its healthy condition at the joint, can be obtained. To analyze a large number of tightness indices, a principle component analysis method is introduced, and a neural network-based loosening detection method is proposed. The proposed method is experimentally validated in a simulated double-layer bolt-jointed thermal protection system panel. Experimental results illustrate that the proposed method is effective to identify and localized the bolt loosening in complicated multibolt-jointed structure. The detection and identification of the location of multibolt loosening is realized.
AB - In this work, a modified time reversal method is proposed for guided wave detection and localizing loosened bolt in a complicated multibolt-jointed structure. Different from the traditional time reversal guided wave method, the response signal due to a tone burst input received at the healthy state is time reversed and recorded as a standard reemitting signal. In the detection process, this recorded standard signal is used for all damage cases to yield time reversal-focalized reconstruction signals. This largely improves the sensitivity of the focalized signal to damage state. In this paper, the peak amplitude of the focalized wave packet in the reconstructed signal is calculated and utilized as tightness index. By bonding PZT transducers at different joint locations inside the structure, multiple tightness indices, where each tightness index presents the correlation between the current joint condition to its healthy condition at the joint, can be obtained. To analyze a large number of tightness indices, a principle component analysis method is introduced, and a neural network-based loosening detection method is proposed. The proposed method is experimentally validated in a simulated double-layer bolt-jointed thermal protection system panel. Experimental results illustrate that the proposed method is effective to identify and localized the bolt loosening in complicated multibolt-jointed structure. The detection and identification of the location of multibolt loosening is realized.
UR - http://www.scopus.com/inward/record.url?scp=85062216412&partnerID=8YFLogxK
U2 - 10.1155/2018/8210817
DO - 10.1155/2018/8210817
M3 - 文章
AN - SCOPUS:85062216412
SN - 1076-2787
VL - 2018
JO - Complexity
JF - Complexity
M1 - 8210817
ER -