A long-range synergistic effect between Ptn clusters and Zn1 single atoms for efficient selective hydrogenations

Haisheng Wei, Jing Li, Xiaorui Yan, Tiantian Liu, Kairui Li, Dan Feng, Yujing Ren

科研成果: 期刊稿件文章同行评审

摘要

Supported platinum group metal (PGM) catalysts are extensively utilized in catalytic hydrogenations. However, the adsorption energies on single PGM surfaces present the inherent scaling properties, which often lead to increased hydrogenation activity at the expense of selectivity. To address this challenge, we developed a space-separated strategy by confining few-atom Ptn clusters in Zn1-N3 sites decorated with microporous carbon material (Ptn@Zn1-N-C) to break the scaling relationship in selective hydrogenations. In detail, Ptn clusters are more favorable for H2 activation, while the Zn1-N3 single-atom sites can preferentially adsorb functional groups with electron-rich oxygen atoms. Benefiting from this long-range synergistic effect, the Ptn@Zn1-N-C catalyst displays superior catalytic performance in the selective hydrogenation of nitroarenes (>99% selectivity at ∼100% conversion, and sulfur compound-resistant hydrogenations) and excellent stability in the reverse water gas shift reaction (>99% selectivity over 40 hours at 600 °C). Our findings provide a confinement approach for further improving catalytic performance in selective hydrogenations.

源语言英语
页(从-至)7822-7830
页数9
期刊Inorganic Chemistry Frontiers
11
22
DOI
出版状态已出版 - 4 10月 2024

指纹

探究 'A long-range synergistic effect between Ptn clusters and Zn1 single atoms for efficient selective hydrogenations' 的科研主题。它们共同构成独一无二的指纹。

引用此