A hybrid approach for processing parameters optimization of Ti-22Al-25Nb alloy during hot deformation using artificial neural network and genetic algorithm

Yu Sun, Weidong Zeng, Xiong Ma, Bin Xu, Xiaobo Liang, Jianwei Zhang

科研成果: 期刊稿件文章同行评审

43 引用 (Scopus)

摘要

In the present investigation, isothermal compression tests of Ti-22Al-25Nb alloy were carried out under various hot deformation conditions, including the deformation temperature range of 940-1060 °C and the strain rate range of 0.01-10 s-1. The constitutive relationship of Ti-22Al-25Nb alloy was developed using artificial neural network (ANN). During training process, standard error back-propagation algorithm was employed in the network model using experimental data sets. Based on the fitness function obtained from established ANN model, the optimization model of hot processing parameters for Ti-22Al-25Nb alloy was successfully created using genetic algorithm (GA). The optimal results achieved from the integrated ANN and GA optimization model were tested by using processing map. Consequently, it can be suggested that the combined approach of ANN and GA provides a novel way with respect to the optimization of processing parameters in the field of materials science.

源语言英语
页(从-至)1014-1019
页数6
期刊Intermetallics
19
7
DOI
出版状态已出版 - 7月 2011

指纹

探究 'A hybrid approach for processing parameters optimization of Ti-22Al-25Nb alloy during hot deformation using artificial neural network and genetic algorithm' 的科研主题。它们共同构成独一无二的指纹。

引用此