A “graphdiyne-like” anti-fouling TBBPA molecularly imprinted membrane synthesized based on the delayed phase inversion method: A concomitant permeability and selectivity

Chao Yu, Jianping Song, Yan Yan, Jia Gao, Wendong Xing, Minjia Meng, Yongsheng Yan, Zhongfei Ma, Yilin Wu

科研成果: 期刊稿件文章同行评审

21 引用 (Scopus)

摘要

Integration of membrane and nanomaterial is a forward-looking research orientation, which can effectively overcome the permeability-selectivity trade-off relationship and improve anti-fouling performance. However, the current combination methods usually suffer from defects due to the aggregation and embedding of nanomaterials, resulting in serious performance deterioration of membrane during continuous operation process. Herein, “graphdiyne-like” Tetrabromobisphenol A molecularly imprinted membranes with uniform and dense SiO2 layer, namely TB-MIMs, are successfully prepared by delayed phase inversion method (DPIM). We found that the membrane prepared by DPIM exhibits both promoted pure water flux (405 L m−2 h−1) and enhanced adsorption capacity (83.476 mg g−1) by comparing with the membranes prepared by blending and grafting methods. The role of molecularly imprinting technique contributes to improving the selectivity of TB-MIMs toward TBBPA, leading to a high selectivity factor of 3.39, 3.27 and 3.05 for bisphenol A, paratert-butyl phenol and 4, 4'-dihydroxybiphenyl, respectively. Moreover, the flux of TB-MIMs is nearly recovered to an original level after washing the bovine serum albumin fouled membrane surface with deionized water. Notably, the TB-MIMs presents a high rejection rate for bovine serum albumin (94%), humic acid (92%) and alginic acid (91%) in natural water, indicating its bright actual application value. These superior performances highlight the advantage of DPIM strategy over traditional methods in terms of combination between membrane and nanomaterials.

源语言英语
文章编号120808
期刊Journal of Membrane Science
659
DOI
出版状态已出版 - 5 10月 2022
已对外发布

指纹

探究 'A “graphdiyne-like” anti-fouling TBBPA molecularly imprinted membrane synthesized based on the delayed phase inversion method: A concomitant permeability and selectivity' 的科研主题。它们共同构成独一无二的指纹。

引用此