A General Divergence Modeling Strategy for Salient Object Detection

Xinyu Tian, Jing Zhang, Yuchao Dai

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Salient object detection is subjective in nature, which implies that multiple estimations should be related to the same input image. Most existing salient object detection models are deterministic following a point to point estimation learning pipeline, making them incapable of estimating the predictive distribution. Although latent variable model based stochastic prediction networks exist to model the prediction variants, the latent space based on the single clean saliency annotation is less reliable in exploring the subjective nature of saliency, leading to less effective saliency “divergence modeling”. Given multiple saliency annotations, we introduce a general divergence modeling strategy via random sampling, and apply our strategy to an ensemble based framework and three latent variable model based solutions to explore the “subjective nature” of saliency. Experimental results prove the superior performance of our general divergence modeling strategy.

源语言英语
主期刊名Computer Vision – ACCV 2022 - 16th Asian Conference on Computer Vision, Proceedings
编辑Lei Wang, Juergen Gall, Tat-Jun Chin, Imari Sato, Rama Chellappa
出版商Springer Science and Business Media Deutschland GmbH
291-309
页数19
ISBN(印刷版)9783031262920
DOI
出版状态已出版 - 2023
活动16th Asian Conference on Computer Vision, ACCV 2022 - Macao, 中国
期限: 4 12月 20228 12月 2022

出版系列

姓名Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)
13847 LNCS
ISSN(印刷版)0302-9743
ISSN(电子版)1611-3349

会议

会议16th Asian Conference on Computer Vision, ACCV 2022
国家/地区中国
Macao
时期4/12/228/12/22

指纹

探究 'A General Divergence Modeling Strategy for Salient Object Detection' 的科研主题。它们共同构成独一无二的指纹。

引用此