摘要
Wind-induced vibration energy harvesting has a great potential for utilizing wind energy to supply power for low-powered devices. To improve the working performance of energy harvesters effectively, a suitable structural design is crucial. This paper proposes a dual-beam piezo-magneto-elastic wake-induced vibration energy harvesting system to enhance the functional performance of aeroelastic energy harvesters in environments with variable wind speeds The system contains two piezoelectric beams coupled by magnets (forming upstream and downstream energy harvesters), and each beam is attached with a foam cylinder. A corresponding dynamic model is provided, and output characteristics are obtained at different wind speeds. Results and experimental verification indicate that both upstream and downstream energy harvesters can realize efficient energy harvesting. When the wind speed exceeds a certain critical value, the amplitudes of the system’s displacement and voltage are high. The wind speed threshold value is approximately 1.25 m/s. When the wind speed and magnet spacing are 10.2 m/s and 20 mm, respectively, the output power of the system reaches 4.9×10−4 W. Moreover, the wind speed threshold value of the proposed system can be adjusted by an equivalent nonlinear restoring force.
源语言 | 英语 |
---|---|
页(从-至) | 221-239 |
页数 | 19 |
期刊 | Science China Technological Sciences |
卷 | 67 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 1月 2024 |