A dataset with ground-truth for hyperspectral unmixing

Min Zhao, Jie Chen

科研成果: 书/报告/会议事项章节会议稿件同行评审

3 引用 (Scopus)

摘要

Spectral unmixing is one of the most important issues of hyperspectral data processing. However, the lack of publicly available dataset with ground-truth makes it difficult to evaluate and compare the performance of unmixing algorithms. In this work, we create several experimental scenes in our laboratory with controlled settings where the pure material spectra and material compositions are known. Lab-made hyperspectral datasets with these scenes are then provided, and mutually validated with typical linear and nonlinear unmixing algorithms.

源语言英语
主期刊名2018 IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Proceedings
出版商Institute of Electrical and Electronics Engineers Inc.
5077-5080
页数4
ISBN(电子版)9781538671504
DOI
出版状态已出版 - 31 10月 2018
活动38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018 - Valencia, 西班牙
期限: 22 7月 201827 7月 2018

出版系列

姓名International Geoscience and Remote Sensing Symposium (IGARSS)
2018-July

会议

会议38th Annual IEEE International Geoscience and Remote Sensing Symposium, IGARSS 2018
国家/地区西班牙
Valencia
时期22/07/1827/07/18

指纹

探究 'A dataset with ground-truth for hyperspectral unmixing' 的科研主题。它们共同构成独一无二的指纹。

引用此