A Computationally Efficient and Aliasing-Free Broadband DOA Estimation for Arbitrary Sparse Linear Arrays

Yang Long, Yang Yixin, Yu Mengling, Bangjie Zhou

科研成果: 书/报告/会议事项章节会议稿件同行评审

摘要

Spatial aliasing is an inevitable issue for sparse linear arrays with the intersensory spacing larger than the half wavelength of the incident signals. Here, a computationally efficient and aliasing-free broadband DOA estimation algorithm is proposed. The array output is first multiplied by a designed diagonal matrix. In this manner, the frequency of the broadband signals is shifted to a given frequency which approximatively satisfies the spatial Nyquist sampling theorem. Thus, the spatial aliasing is avoided. Then the proposed method is demonstrated to be applicable to arbitrary sparse linear arrays. Simulation results are included to show the anti aliasing property and the computational efficiency of the proposed method.

源语言英语
主期刊名OCEANS 2023 - Limerick, OCEANS Limerick 2023
出版商Institute of Electrical and Electronics Engineers Inc.
ISBN(电子版)9798350332261
DOI
出版状态已出版 - 2023
活动2023 OCEANS Limerick, OCEANS Limerick 2023 - Limerick, 爱尔兰
期限: 5 6月 20238 6月 2023

出版系列

姓名OCEANS 2023 - Limerick, OCEANS Limerick 2023

会议

会议2023 OCEANS Limerick, OCEANS Limerick 2023
国家/地区爱尔兰
Limerick
时期5/06/238/06/23

指纹

探究 'A Computationally Efficient and Aliasing-Free Broadband DOA Estimation for Arbitrary Sparse Linear Arrays' 的科研主题。它们共同构成独一无二的指纹。

引用此