A composite acoustic black hole for ultra-low-frequency and ultra-broad-band sound wave control

Xiao Liang, Haofeng Liang, Jiaming Chu, Zhen Yang, Zhuo Zhou, Nansha Gao, Siwen Zhang, Guojian Zhou, Congfang Hu

科研成果: 期刊稿件文章同行评审

6 引用 (Scopus)

摘要

Achieving ultra-low and ultra-broad-band sound absorption and full-band sound insulation is a major challenge. Here, we propose a composite structure of a multilayer micro-perforated plate and acoustic black holes to achieve this purpose. Combining the stable sound absorption effect of the multilayer micro-perforated plate in the full frequency band and the sound insulation effect of the acoustic black hole in the low frequency and the excellent sound absorption effect in the high frequency, the excellent sound control effect of 600–3150 Hz absorption coefficient greater than 0.8 and 100–3150 Hz sound transmission loss greater than 50 dB is achieved. The acoustic properties of different components and different acoustic black hole outlet were evaluated by finite element method, and the principles of sound absorption and insulation of the composite structure were elaborated. Finally, the results of finite element method are verified by impedance tube experiments. This work can make further progress in elucidating the acoustic properties of the ABH and open up new avenues in the control of ultra-low and ultra-wide frequency acoustic waves.

源语言英语
页(从-至)3462-3471
页数10
期刊JVC/Journal of Vibration and Control
30
15-16
DOI
出版状态已出版 - 8月 2024

指纹

探究 'A composite acoustic black hole for ultra-low-frequency and ultra-broad-band sound wave control' 的科研主题。它们共同构成独一无二的指纹。

引用此