TY - JOUR
T1 - A Competitive Reaction Strategy toward Binary Metal Sulfides for Tailoring Electromagnetic Wave Absorption
AU - Liu, Jiaolong
AU - Zhang, Limin
AU - Zang, Duyang
AU - Wu, Hongjing
N1 - Publisher Copyright:
© 2021 Wiley-VCH GmbH
PY - 2021/11/3
Y1 - 2021/11/3
N2 - The development of multicomponent dielectric composites has become a mainstream approach for obtaining excellent electromagnetic wave (EMW) absorbers. However, conventional component introduction is often performed blindly and based only on semiempirical rules, lacking precise modulation of components, interfaces, and defects during the reaction process. Herein, a competitive reaction mechanism is proposed for the first time, in which not only the metal ion concentration but also its characteristic are two feasible parameters to control the components, interfaces, and defects to tailor the EMW absorption performances of Cu-based binary metal sulfides. The appropriate heterogeneous interfaces and components and the abundant defects can synergistically benefit the EMW absorption capacity by forming perfect impedance matching and multiple dielectric polarizations. As a result, combined with these advantages, an effective absorption band) of 6.80 GHz (6.3–13.1 GHz) is achieved at 2.80 mm for Cu–Co binary metal sulfide, showing the sole middle-frequency broadband absorption of reported sulfide-based absorbers to date. Other Cu-based binary metal sulfides deliver different EMW absorption behaviors. This work breaks through the limitation of traditional component design, opening up a novel methodology for designing multicomponent composites beyond sulfides with broadband absorption.
AB - The development of multicomponent dielectric composites has become a mainstream approach for obtaining excellent electromagnetic wave (EMW) absorbers. However, conventional component introduction is often performed blindly and based only on semiempirical rules, lacking precise modulation of components, interfaces, and defects during the reaction process. Herein, a competitive reaction mechanism is proposed for the first time, in which not only the metal ion concentration but also its characteristic are two feasible parameters to control the components, interfaces, and defects to tailor the EMW absorption performances of Cu-based binary metal sulfides. The appropriate heterogeneous interfaces and components and the abundant defects can synergistically benefit the EMW absorption capacity by forming perfect impedance matching and multiple dielectric polarizations. As a result, combined with these advantages, an effective absorption band) of 6.80 GHz (6.3–13.1 GHz) is achieved at 2.80 mm for Cu–Co binary metal sulfide, showing the sole middle-frequency broadband absorption of reported sulfide-based absorbers to date. Other Cu-based binary metal sulfides deliver different EMW absorption behaviors. This work breaks through the limitation of traditional component design, opening up a novel methodology for designing multicomponent composites beyond sulfides with broadband absorption.
KW - competitive reaction
KW - defects
KW - electromagnetic wave absorption
KW - interfaces
KW - sulfides
UR - http://www.scopus.com/inward/record.url?scp=85112641535&partnerID=8YFLogxK
U2 - 10.1002/adfm.202105018
DO - 10.1002/adfm.202105018
M3 - 文章
AN - SCOPUS:85112641535
SN - 1616-301X
VL - 31
JO - Advanced Functional Materials
JF - Advanced Functional Materials
IS - 45
M1 - 2105018
ER -