TY - JOUR
T1 - A Blockchain-enabled Cold Start Aggregation Scheme for Federated Reinforcement Learning-based Task Offloading in Zero Trust LEO Satellite Networks
AU - Mao, Bomin
AU - Liu, Yangbo
AU - Wei, Zixiang
AU - Guo, Hongzhi
AU - Xun, Yijie
AU - Wang, Jiadai
AU - Liu, Jiajia
AU - Kato, Nei
N1 - Publisher Copyright:
© 1983-2012 IEEE.
PY - 2025
Y1 - 2025
N2 - The development of 6G should enable users in remote and harsh areas to enjoy computation-intensive services including metaverse entertainment, intelligent transportation, and immersive communications. Low Earth Orbit (LEO) satellite constellations widely constructed in recent years have been recognized as an efficient solution to complement the terrestrial infrastructure with seamless coverage and decreasing expenses for both communication and computation services. However, the widely studied Federated Reinforcement Learning (FRL) based task offloading strategies neglect the potential trust concerns like malicious satellites and buffer pollution, while 6G service providers may rent the LEO satellites belonging to different companies to minimize the expense. To address these issues, blockchain has been considered in the Zero Trust (ZT) scenario, with the group consensus mechanism through the smart contract. Moreover, we propose a Constrained Correction Voting Mechanism (CCVM) to give punishing correction to the aggregation weight of malicious voting satellites. Furthermore, a Cold Start Reputation Aggregation (CSRA) scheme is adopted to first severely degrade and then gradually recover the weight of Federated Learning (FL) sub-models trained by malicious satellites. Thus, the Blockchain-enabled Cold Start Aggregation FRL (BCSA-FRL) scheme is proposed to make effective and secure offloading decisions in the ZT LEO satellite Networks. The numerical results illustrate the advantages of our proposal.
AB - The development of 6G should enable users in remote and harsh areas to enjoy computation-intensive services including metaverse entertainment, intelligent transportation, and immersive communications. Low Earth Orbit (LEO) satellite constellations widely constructed in recent years have been recognized as an efficient solution to complement the terrestrial infrastructure with seamless coverage and decreasing expenses for both communication and computation services. However, the widely studied Federated Reinforcement Learning (FRL) based task offloading strategies neglect the potential trust concerns like malicious satellites and buffer pollution, while 6G service providers may rent the LEO satellites belonging to different companies to minimize the expense. To address these issues, blockchain has been considered in the Zero Trust (ZT) scenario, with the group consensus mechanism through the smart contract. Moreover, we propose a Constrained Correction Voting Mechanism (CCVM) to give punishing correction to the aggregation weight of malicious voting satellites. Furthermore, a Cold Start Reputation Aggregation (CSRA) scheme is adopted to first severely degrade and then gradually recover the weight of Federated Learning (FL) sub-models trained by malicious satellites. Thus, the Blockchain-enabled Cold Start Aggregation FRL (BCSA-FRL) scheme is proposed to make effective and secure offloading decisions in the ZT LEO satellite Networks. The numerical results illustrate the advantages of our proposal.
KW - Blockchain
KW - Federated Reinforcement Learning
KW - LEO Satellite Networks
KW - Task Offloading
KW - Zero Trust
UR - http://www.scopus.com/inward/record.url?scp=105002784904&partnerID=8YFLogxK
U2 - 10.1109/JSAC.2025.3560003
DO - 10.1109/JSAC.2025.3560003
M3 - 文章
AN - SCOPUS:105002784904
SN - 0733-8716
JO - IEEE Journal on Selected Areas in Communications
JF - IEEE Journal on Selected Areas in Communications
ER -