3D reconstruction from non-uniform point clouds via local hierarchical clustering

Jiaqi Yang, Ruibo Li, Yang Xiao, Zhiguo Cao

科研成果: 书/报告/会议事项章节会议稿件同行评审

6 引用 (Scopus)

摘要

Raw scanned 3D point clouds are usually irregularly distributed due to the essential shortcomings of laser sensors, which therefore poses a great challenge for high-quality 3D surface reconstruction. This paper tackles this problem by proposing a local hierarchical clustering (LHC) method to improve the consistency of point distribution. Specifically, LHC consists of two steps: 1) adaptive octree-based decomposition of 3D space, and 2) hierarchical clustering. The former aims at reducing the computational complexity and the latter transforms the non-uniform point set into uniform one. Experimental results on real-world scanned point clouds validate the effectiveness of our method from both qualitative and quantitative aspects.

源语言英语
主期刊名Ninth International Conference on Digital Image Processing, ICDIP 2017
编辑Xudong Jiang, Charles M. Falco
出版商SPIE
ISBN(电子版)9781510613041
DOI
出版状态已出版 - 2017
已对外发布
活动9th International Conference on Digital Image Processing, ICDIP 2017 - Hong Kong, 中国
期限: 19 5月 201722 5月 2017

出版系列

姓名Proceedings of SPIE - The International Society for Optical Engineering
10420
ISSN(印刷版)0277-786X
ISSN(电子版)1996-756X

会议

会议9th International Conference on Digital Image Processing, ICDIP 2017
国家/地区中国
Hong Kong
时期19/05/1722/05/17

指纹

探究 '3D reconstruction from non-uniform point clouds via local hierarchical clustering' 的科研主题。它们共同构成独一无二的指纹。

引用此