TY - JOUR
T1 - 3D Quantitative Characterization of Fractures and Cavities in Digital Outcrop Texture Model Based on Lidar
AU - Liang, Bo
AU - Liu, Yuangang
AU - Shao, Yanlin
AU - Wang, Qing
AU - Zhang, Naidan
AU - Li, Shaohua
N1 - Publisher Copyright:
© 2022 by the authors. Licensee MDPI, Basel, Switzerland.
PY - 2022/3/1
Y1 - 2022/3/1
N2 - The combination of lidar and digital photography provides a new technology for creating a high-resolution 3D digital outcrop model. The digital outcrop model can accurately and conveniently depict the surface 3D properties of an outcrop profile, making up for the shortcomings of traditional outcrop research techniques. However, the advent of digital outcrop poses additional challenges to the 3D spatial analysis of virtual outcrop models, particularly in the interpretation of geological characteristics. In this study, the detailed workflow of automated interpretation of geological characteristics of fractures and cavities on a 3D digital outcrop texture model is described. Firstly, advanced automatic image analysis technology is used to detect the 2D contour of the fractures and cavities in the picture. Then, to obtain an accurate representation of the 3D structure of the fractures and cavities on the digital outcrop model, a projection method for converting 2D coordinates to 3D space based on geometric transformations such as affine transformation and linear interpolation is proposed. Quantitative data on the size, shape, and distribution of geological features are calculated using this information. Finally, a novel and comprehensive automated 3D quantitative characterization technique for fractures and cavities on the 3D digital outcrop texture model is developed. The proposed technology has been applied to the 3D mapping and quantitative characterization of fractures and cavities on the outcrop profile for the Dengying Formation (second member), providing a foundation for profile reservoir appraisal in the research region. Furthermore, this approach may be extended to the 3D characterization and analysis of any point, line, and surface objects derived from outcrop photos, hence increasing the application value of the 3D digital outcrop model.
AB - The combination of lidar and digital photography provides a new technology for creating a high-resolution 3D digital outcrop model. The digital outcrop model can accurately and conveniently depict the surface 3D properties of an outcrop profile, making up for the shortcomings of traditional outcrop research techniques. However, the advent of digital outcrop poses additional challenges to the 3D spatial analysis of virtual outcrop models, particularly in the interpretation of geological characteristics. In this study, the detailed workflow of automated interpretation of geological characteristics of fractures and cavities on a 3D digital outcrop texture model is described. Firstly, advanced automatic image analysis technology is used to detect the 2D contour of the fractures and cavities in the picture. Then, to obtain an accurate representation of the 3D structure of the fractures and cavities on the digital outcrop model, a projection method for converting 2D coordinates to 3D space based on geometric transformations such as affine transformation and linear interpolation is proposed. Quantitative data on the size, shape, and distribution of geological features are calculated using this information. Finally, a novel and comprehensive automated 3D quantitative characterization technique for fractures and cavities on the 3D digital outcrop texture model is developed. The proposed technology has been applied to the 3D mapping and quantitative characterization of fractures and cavities on the outcrop profile for the Dengying Formation (second member), providing a foundation for profile reservoir appraisal in the research region. Furthermore, this approach may be extended to the 3D characterization and analysis of any point, line, and surface objects derived from outcrop photos, hence increasing the application value of the 3D digital outcrop model.
KW - Carbonate reservoir
KW - Characterization of fractures and cavities
KW - Digital outcrop model
KW - Feature detection
KW - Lidar
UR - http://www.scopus.com/inward/record.url?scp=85126053475&partnerID=8YFLogxK
U2 - 10.3390/en15051627
DO - 10.3390/en15051627
M3 - 文章
AN - SCOPUS:85126053475
SN - 1996-1073
VL - 15
JO - Energies
JF - Energies
IS - 5
M1 - 1627
ER -