摘要
Aiming at the shortcomings of the traditional optimization algorithm in solving the multi-satellite regional scheduling problem such as slow convergence speed and being prone to fall into the local optimal solution, an improved adaptive genetic algorithm was proposed. The algorithm uses Monte Carlo method combined with Hamming distance to give a better initial population. According to the average Hamming distance of the population, the execution sequence of crossover and mutation operations are determined. The Sigmoid function and Gaussian function are combined to design the adaptive nonlinear crossover rate and mutation rate based on the individual fitness of the population. The dual elite retention strategy and tournament strategy are combined to ensure the inheritance of the optimal individual. Dual shutdown condition is used to improve the search efficiency of the algorithm. Finally, experiment shows that the method can significantly improve the global search ability, accelerate the convergence speed of the algorithm, and effectively improve the observation efficiency of satellites.
投稿的翻译标题 | An improved adaptive genetic algorithm for multi-satellite area observation scheduling |
---|---|
源语言 | 繁体中文 |
页(从-至) | 38-47 |
页数 | 10 |
期刊 | Zhongguo Kongjian Kexue Jishu/Chinese Space Science and Technology |
卷 | 41 |
期 | 1 |
DOI | |
出版状态 | 已出版 - 25 2月 2021 |
关键词
- Adaptation
- Dual shutdown condition
- Genetic algorithm
- Monte Carlo
- Satellite observation scheduling
- Swinging strategy