TY - JOUR
T1 - 时间偏差校准分布式多传感器多目标跟踪算法
AU - Li, Song
AU - Cheng, Yongmei
AU - Wang, Huibin
AU - Gao, Shibo
N1 - Publisher Copyright:
© 2020 Journal of Northwestern Polytechnical University.
PY - 2020/8/1
Y1 - 2020/8/1
N2 - In multisensor systems, the signal processing delay, measurement acquisition delay, and other factors will lead to imprecisely time-stamped measurements, namely, the problem of time-offset. To deal with the measurement time offsets in distributed multisensor systems, a distributed multisensor multitarget tracking algorithm with time-offset registration is proposed. The local processors track multiple targets in the presence of false alarms and missed detections based on the joint probabilistic data association (JPDA) algorithm and the extended Kalman filter (EKF), providing the time-biased local tracks. In the global processor, in allusion to the global track accuracy degradation introduced by the time offsets of local tracks, the equivalent measurements are firstly constructed based on local tracks by using the inverse Kalman filter. The pseudo-measurement equation of time offset for constant velocity targets is derived and the pseudo-measurement calculation method is presented. Then, the pseudo-measurement based relative time-offset estimation algorithm is presented, by using the recursive least squares estimation (RLSE) and the Kalman filter (KF) to jointly estimate the state in space and time domains, respectively. Finally, a framework of distributed multisensor multitarget tracking with time-offset registration is presented, where the time-varying relative time-offset estimation and compensation, 'equivalent measurement to global track' association, and global track update are included. Simulations for multisensor multitarget tracking in the presence of false alarms and missed detections are conducted, demonstrating that the present algorithm effectively improves the accuracy of fused global tracks.
AB - In multisensor systems, the signal processing delay, measurement acquisition delay, and other factors will lead to imprecisely time-stamped measurements, namely, the problem of time-offset. To deal with the measurement time offsets in distributed multisensor systems, a distributed multisensor multitarget tracking algorithm with time-offset registration is proposed. The local processors track multiple targets in the presence of false alarms and missed detections based on the joint probabilistic data association (JPDA) algorithm and the extended Kalman filter (EKF), providing the time-biased local tracks. In the global processor, in allusion to the global track accuracy degradation introduced by the time offsets of local tracks, the equivalent measurements are firstly constructed based on local tracks by using the inverse Kalman filter. The pseudo-measurement equation of time offset for constant velocity targets is derived and the pseudo-measurement calculation method is presented. Then, the pseudo-measurement based relative time-offset estimation algorithm is presented, by using the recursive least squares estimation (RLSE) and the Kalman filter (KF) to jointly estimate the state in space and time domains, respectively. Finally, a framework of distributed multisensor multitarget tracking with time-offset registration is presented, where the time-varying relative time-offset estimation and compensation, 'equivalent measurement to global track' association, and global track update are included. Simulations for multisensor multitarget tracking in the presence of false alarms and missed detections are conducted, demonstrating that the present algorithm effectively improves the accuracy of fused global tracks.
KW - Distributed track fusion
KW - Equivalent measurement
KW - Multitarget tracking
KW - Pseudo-measurement equation
KW - Time-offset estimation
UR - http://www.scopus.com/inward/record.url?scp=85091296258&partnerID=8YFLogxK
U2 - 10.1051/jnwpu/20203840797
DO - 10.1051/jnwpu/20203840797
M3 - 文章
AN - SCOPUS:85091296258
SN - 1000-2758
VL - 38
SP - 797
EP - 805
JO - Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
JF - Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
IS - 4
ER -