TY - JOUR
T1 - 基于 BC2 FNet 网络的 RGB⁃D 显著性目标检测
AU - Wang, Feng
AU - Cheng, Yongmei
N1 - Publisher Copyright:
©2024 Journal of Northwestern Polytechnical University.
PY - 2024/12
Y1 - 2024/12
N2 - In the face of complex scene images, the introduction of depth information can greatly improve the performance of salient object detection. However, up-sampling and down-sampling operations in neural networks maybe blur the boundaries of objects in the saliency map, thereby reducing the performance of salient object detection. Aiming at this problem, a boundary-driven cross-modal and cross-layer fusion network (BC2FNet) for RGB-D salient object detection is proposed in this paper, which preserves the boundary of the object by adding the guidance of boundary information to the cross-modal and cross-layer fusion, respectively. Firstly, a boundary generation module is designed to extract two kinds of boundary information from low-level features of RGB and depth modalities, respectively. Secondly, a boundary-driven feature selection module is designed, which is dedicated to simultaneously focusing on important feature information and preserving boundary details in the process of RGB and depth modality fusion. Finally, a boundary-driven cross-layer fusion module is proposed which simultaneously adds two kinds of boundary information in the process of up-sampling fusion on adjacent layers. By embedding this module into the top-down information fusion flow, the predicted saliency map can contain accurate objects and sharp boundaries. Simulation results on five standard RGB-D data sets show that the proposed model can achieve better performance.
AB - In the face of complex scene images, the introduction of depth information can greatly improve the performance of salient object detection. However, up-sampling and down-sampling operations in neural networks maybe blur the boundaries of objects in the saliency map, thereby reducing the performance of salient object detection. Aiming at this problem, a boundary-driven cross-modal and cross-layer fusion network (BC2FNet) for RGB-D salient object detection is proposed in this paper, which preserves the boundary of the object by adding the guidance of boundary information to the cross-modal and cross-layer fusion, respectively. Firstly, a boundary generation module is designed to extract two kinds of boundary information from low-level features of RGB and depth modalities, respectively. Secondly, a boundary-driven feature selection module is designed, which is dedicated to simultaneously focusing on important feature information and preserving boundary details in the process of RGB and depth modality fusion. Finally, a boundary-driven cross-layer fusion module is proposed which simultaneously adds two kinds of boundary information in the process of up-sampling fusion on adjacent layers. By embedding this module into the top-down information fusion flow, the predicted saliency map can contain accurate objects and sharp boundaries. Simulation results on five standard RGB-D data sets show that the proposed model can achieve better performance.
KW - boundary-driven
KW - cross-layer fusion
KW - cross-modal fusion
KW - salient object detection
UR - http://www.scopus.com/inward/record.url?scp=85214477792&partnerID=8YFLogxK
U2 - 10.1051/jnwpu/20244261135
DO - 10.1051/jnwpu/20244261135
M3 - 文章
AN - SCOPUS:85214477792
SN - 1000-2758
VL - 42
SP - 1135
EP - 1143
JO - Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
JF - Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
IS - 6
ER -