基于模糊约束的贝叶斯网络参数学习

Xinxin Ru, Xiaoguang Gao, Yangyang Wang

科研成果: 期刊稿件文章同行评审

5 引用 (Scopus)

摘要

To address the problem of Bayesian networks parameter learning under small datasets, a fuzzy maximum posteriori estimation method is proposed, introducing fuzzy theory into parameter learning. The hyperparameter is determined by using the membership function to measure constraint effectiveness to improve the accuracy of constraint usage for learning. Experiments prove that the proposed method can effectively improve the accuracy of parameter learning. In addition, the proposed parameter learning method is applied to a network security assessment by using common vulnerability scoring system as expert priori parameters and combining vulnerability transfer samples to perform parameter learning. Finally, the node and path security evaluation verifies the effectiveness of the proposed algorithm.

投稿的翻译标题Bayesian network parameter learning based on fuzzy constraints
源语言繁体中文
页(从-至)444-452
页数9
期刊Xi Tong Gong Cheng Yu Dian Zi Ji Shu/Systems Engineering and Electronics
45
2
DOI
出版状态已出版 - 2月 2023

关键词

  • Bayesian network
  • membership function
  • network security assessment
  • parameter learning

指纹

探究 '基于模糊约束的贝叶斯网络参数学习' 的科研主题。它们共同构成独一无二的指纹。

引用此