基于改进 EfficientNet 的轻量化小麦不完善粒识别模型

Jinlong Yu, Junwei Yu, Zihao Zhang, Quan Pan, Yashuang Mu

科研成果: 期刊稿件文章同行评审

摘要

To address the problems of high complexity and difficult deployment of existing recognition models for imperfect wheat grains based on convolutional neural networks,a lightweight imperfect wheat grain recognition model ML − EfficientNet based on the improved EfficientNet − B0 was proposed. Firstly,a lightweight attention module LCSA was proposed by improving the CBAM attention module and replacing the SE module in the original network with the LCSA module,so that the model could obtain both channel information and spatial information to enhance the modelś recognition ability. Then,the structure of MBConv was adjusted by drawing on the CSPnet idea to realize the purpose of improving themodelś recognition accuracy while reducing the number of model parameters. Finally,the LCSA module was added after the first convolutional layer of the model to enhance the feature extraction capability of the model. The experimental results indicated that the recognition accuracy of the ML − EfficientNet model was 95. 71%,the number of parameters was 2. 863 M,and the floating point computation was 0. 376 G. Compared with the pre − improvement model,the recognition accuracy was improved by 1. 57 percentage points,the amount of parameters was reduced by 60%,and the amount of floating − point computation was reduced by 9%,effectively carrying out the recognition task of imperfect wheat grains and provided useful support for smart agriculture.

投稿的翻译标题Lightweight Imperfect Wheat Grain Identification Model Based on Improved EfficientNet
源语言繁体中文
页(从-至)192-202
页数11
期刊Journal of the Chinese Cereals and Oils Association
40
2
DOI
出版状态已出版 - 2月 2025

关键词

  • attention mechanism
  • EfficientNet − B0
  • imperfect wheat grain recognition
  • lightweight

指纹

探究 '基于改进 EfficientNet 的轻量化小麦不完善粒识别模型' 的科研主题。它们共同构成独一无二的指纹。

引用此