基于多项式近似的空间碎片群体轨道预报算法

Zhen Zhang, Jianlin Chen, Chong Sun, Qun Fang, Zhanxia Zhu

科研成果: 期刊稿件文章同行评审

3 引用 (Scopus)

摘要

It is important to analyze the orbital evolution behavior of space debris cluster quickly and accurately for collision avoidance of spacecraft in orbit. Under the action of each perturbation force, the evolutionary movement of space debris cluster presents complex nonlinear characteristics. The space debris population has a large number of individuals. If the orbital integration of each space debris in the space debris population is used to analyze the population prediction, the amount of calculation will be too large. To solve this problem, a fast orbit prediction method based on polynomial approximation was proposed. This method divided space debris cluster into a small number of nominal fragments and a large number of other associated fragments. For orbit prediction of nominal debris, numerical integration was used to ensure the accuracy of prediction. For a large number of other associated debris orbit prediction problems, polynomial Taylor expansion semi-analytical method was used, so as to effectively reduce the calculation of space debris cluster orbit prediction on the precondition of ensuring the prediction accuracy. Orbit prediction simulations for different space debris cluster were carried out. The simulation results show that when the orbit prediction accuracy is set within 1 meter, the calculation efficiency of polynomial approximation algorithm is 2.2 to 17.2 times higher than that of Monte Carlo method, which verifies the effectiveness of the proposed method.

投稿的翻译标题Orbit prediction algorithm for space debris cluster based on polynomial approximation
源语言繁体中文
页(从-至)89-98
页数10
期刊Zhongguo Kongjian Kexue Jishu/Chinese Space Science and Technology
42
6
DOI
出版状态已出版 - 25 12月 2022

关键词

  • associated debris
  • nominal debris
  • orbit prediction
  • orbital perturbation
  • polynomial approximation
  • space debris cluster
  • taylor expansion

指纹

探究 '基于多项式近似的空间碎片群体轨道预报算法' 的科研主题。它们共同构成独一无二的指纹。

引用此