基于多视图传播的无监督三维重建方法

Jingfeng Luo, Dongli Yuan, Lan Zhang, Yaohong Qu, Shihong Su

科研成果: 期刊稿件文章同行评审

摘要

In this paper, an end-to-end deep learning framework for reconstructing 3D models by computing depth maps from multiple views is proposed. An unsupervised 3D reconstruction method based on multi-view propagation is introduced, which addresses the issues of large GPU memory consumption caused by most current research methods using 3D convolution for 3D cost volume regularization and regression to obtain the initial depth map, as well as the difficulty in obtaining true depth values in supervised methods due to device limitations. The method is inspired by the Patchmatch algorithm, and the depth is divided into n layers within the depth range to obtain depth hypotheses through multi-view propagation. What's more, a multi-metric loss function is constructed based on luminosity consistency, structural similarity, and depth smoothness between multiple views to serve as a supervisory signal for learning depth predictions in the network. The experimental results show our proposed method has a very competitive performance and generalization on the DTU, Tanks & Temples and our self-made dataset; Specifically, it is at least 1.7 times faster and requires more than 75% less memory than the method that utilizes 3D cost volume regularization.

投稿的翻译标题Unsupervised 3D reconstruction method based on multi-view propagation
源语言繁体中文
页(从-至)129-137
页数9
期刊Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
42
1
DOI
出版状态已出版 - 2月 2024

关键词

  • 3D reconstruction
  • multi-metric loss function
  • multi-view propagation
  • Patchmatch algorithm
  • unsupervised

指纹

探究 '基于多视图传播的无监督三维重建方法' 的科研主题。它们共同构成独一无二的指纹。

引用此