TY - JOUR
T1 - 单次脉冲爆震反压传播规律与抑制研究
AU - Li, Qing'an
AU - Wang, Ke
AU - Fan, Wei
AU - Yang, Hai
AU - Han, Junde
AU - Huang, Ke
AU - Kang, Jian
AU - Gao, Yaqing
AU - Jiang, Yumin
N1 - Publisher Copyright:
©2023 Journal of Northwestern Polytechnical University.
PY - 2023/12
Y1 - 2023/12
N2 - The backflow and back-pressure propagation induced in a pulse detonation combustor (PDC) are the main factor in causing the thrust losses of a pulse detonation engine. In order to suppression the backflow propagation of a PDC, the aero-dynamic suppression strategy was implemented in this work. A total of ten isolators composed of different geometries were designed. A single-pulse detonation experiment was conducted by using the stoichiometric ethylene/ enriched-oxygen mixture. It is shown that when the back-pressure has propagated about 0.86 the length of PDC, the propagation speeds and the pecks of the back-pressure in the isolator, which composed of the Venturi tube (V) and a long tube with 1.5 times diameter of the PDC, can be reduced by 10% and 20%, respectively, comparing with the base isolator. Comparing with the isolators that without the Tesla valve (T), the propagation speed of the back-pressure in the cases with the Tesla valve can be additionally reduced above 27.3%. Comparing with the isolators that without the slit (S), the peaks of the back-pressure in the cases with the slit can be decreased about 25%. The average decay rate of the back-pressure peaks can be highly increased if the cone (C) is introduced. It is found that the CVST-type isolator is the optimal. Comparing with the base isolator, the backpressure propagated in the CVST-type isolator can decrease about 50% and 40.5% of propagation speed and pressure peaks, respectively, and can increase the average decay rate of the back-pressure peaks by a factor of two.
AB - The backflow and back-pressure propagation induced in a pulse detonation combustor (PDC) are the main factor in causing the thrust losses of a pulse detonation engine. In order to suppression the backflow propagation of a PDC, the aero-dynamic suppression strategy was implemented in this work. A total of ten isolators composed of different geometries were designed. A single-pulse detonation experiment was conducted by using the stoichiometric ethylene/ enriched-oxygen mixture. It is shown that when the back-pressure has propagated about 0.86 the length of PDC, the propagation speeds and the pecks of the back-pressure in the isolator, which composed of the Venturi tube (V) and a long tube with 1.5 times diameter of the PDC, can be reduced by 10% and 20%, respectively, comparing with the base isolator. Comparing with the isolators that without the Tesla valve (T), the propagation speed of the back-pressure in the cases with the Tesla valve can be additionally reduced above 27.3%. Comparing with the isolators that without the slit (S), the peaks of the back-pressure in the cases with the slit can be decreased about 25%. The average decay rate of the back-pressure peaks can be highly increased if the cone (C) is introduced. It is found that the CVST-type isolator is the optimal. Comparing with the base isolator, the backpressure propagated in the CVST-type isolator can decrease about 50% and 40.5% of propagation speed and pressure peaks, respectively, and can increase the average decay rate of the back-pressure peaks by a factor of two.
KW - backflow
KW - detonation
KW - pressure attenuation
KW - pressure propagation
KW - pulse detonation engine
UR - http://www.scopus.com/inward/record.url?scp=85181745565&partnerID=8YFLogxK
U2 - 10.1051/jnwpu/20234161125
DO - 10.1051/jnwpu/20234161125
M3 - 文章
AN - SCOPUS:85181745565
SN - 1000-2758
VL - 41
SP - 1125
EP - 1133
JO - Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
JF - Xibei Gongye Daxue Xuebao/Journal of Northwestern Polytechnical University
IS - 6
ER -