一种依需聚合的语义解析图查询模型

Qing Li, Jiang Zhong, Li Li Li, Qi Li, Shu Fang Zhang, Jian Zhang

科研成果: 期刊稿件文章同行评审

2 引用 (Scopus)

摘要

In this paper, we design and propose SemtoSql+, a semantic deep network query model based on demand aggregation.At the same time, it is a network to address the complex and cross-domain Text-to-SQL generation task.Based on LSTM and Word2Vec embedding technology, the corpus is trained as the input word vector of the model.Combined with the dependency graph method, the problem of SQL statement generation transforms into slot filling.SemtoSql+divides complex tasks into four levels and constructs by the need of aggregation, using the attention mechanism to effectively avoid the order problem in the traditional model and using a random masked mechanism to enhance the model.

投稿的翻译标题Semantic Parsing Graph Query Model for On-Demand Aggregation
源语言繁体中文
页(从-至)763-771
页数9
期刊Tien Tzu Hsueh Pao/Acta Electronica Sinica
48
4
DOI
出版状态已出版 - 1 4月 2020
已对外发布

关键词

  • Complex events
  • Deep learning
  • Natural semantic processing
  • Semantic web

指纹

探究 '一种依需聚合的语义解析图查询模型' 的科研主题。它们共同构成独一无二的指纹。

引用此