Zoom Text Detector

Chuang Yang, Mulin Chen, Yuan Yuan, Qi Wang

Research output: Contribution to journalArticlepeer-review

7 Scopus citations

Abstract

To pursue comprehensive performance, recent text detectors improve detection speed at the expense of accuracy. They adopt shrink-mask-based text representation strategies, which leads to a high dependence of detection accuracy on shrink-masks. Unfortunately, three disadvantages cause unreliable shrink-masks. Specifically, these methods try to strengthen the discrimination of shrink-masks from the background by semantic information. However, the feature defocusing phenomenon that coarse layers are optimized by fine-grained objectives limits the extraction of semantic features. Meanwhile, since both shrink-masks and the margins belong to texts, the detail loss phenomenon that the margins are ignored hinders the distinguishment of shrink-masks from the margins, which causes ambiguous shrink-mask edges. Moreover, false-positive samples enjoy similar visual features with shrink-masks. They aggravate the decline of shrink-masks recognition. To avoid the above problems, we propose a zoom text detector (ZTD) inspired by the zoom process of the camera. Specifically, zoomed-out view module (ZOM) is introduced to provide coarse-grained optimization objectives for coarse layers to avoid feature defocusing. Meanwhile, zoomed-in view module (ZIM) is presented to enhance the margins recognition to prevent detail loss. Furthermore, sequential-visual discriminator (SVD) is designed to suppress false-positive samples by sequential and visual features. Experiments verify the superior comprehensive performance of ZTD.

Original languageEnglish
Pages (from-to)15745-15757
Number of pages13
JournalIEEE Transactions on Neural Networks and Learning Systems
Volume35
Issue number11
DOIs
StatePublished - 2024

Keywords

  • Detail loss
  • false-positive samples
  • feature defocusing
  • text detection
  • zoom strategy

Fingerprint

Dive into the research topics of 'Zoom Text Detector'. Together they form a unique fingerprint.

Cite this