Worst-case discriminative feature selection

Shuangli Liao, Quanxue Gao, Feiping Nie, Yang Liu, Xiangdong Zhang

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

11 Scopus citations

Abstract

Feature selection plays a critical role in data mining, driven by increasing feature dimensionality in target problems. In this paper, we propose a new criterion for discriminative feature selection, worst-case discriminative feature selection (WDFS). Unlike Fisher Score and other methods based on the discriminative criteria considering the overall (or average) separation of data, WDFS adopts a new perspective called worst-case view which arguably is more suitable for classification applications. Specifically, WDFS directly maximizes the ratio of the minimum of between-class variance of all class pairs over the maximum of within-class variance, and thus it duly considers the separation of all classes. Otherwise, we take a greedy strategy by finding one feature at a time, but it is very easy to implement and effective. Moreover, we utilize the correlation between features to help reduce the redundancy, and then WDFS is extended to uncorrelated WDFS (UWDFS). To evaluate the effectiveness of the proposed algorithm, we conduct classification experiments on many real data sets. In the experiment, we respectively use the original features and the score vectors of features over all class pairs to calculate the correlation coefficients, and analyze the experimental results in these two ways. Experimental results demonstrate the effectiveness of WDFS and UWDFS.

Original languageEnglish
Title of host publicationProceedings of the 28th International Joint Conference on Artificial Intelligence, IJCAI 2019
EditorsSarit Kraus
PublisherInternational Joint Conferences on Artificial Intelligence
Pages2973-2979
Number of pages7
ISBN (Electronic)9780999241141
DOIs
StatePublished - 2019
Event28th International Joint Conference on Artificial Intelligence, IJCAI 2019 - Macao, China
Duration: 10 Aug 201916 Aug 2019

Publication series

NameIJCAI International Joint Conference on Artificial Intelligence
Volume2019-August
ISSN (Print)1045-0823

Conference

Conference28th International Joint Conference on Artificial Intelligence, IJCAI 2019
Country/TerritoryChina
CityMacao
Period10/08/1916/08/19

Fingerprint

Dive into the research topics of 'Worst-case discriminative feature selection'. Together they form a unique fingerprint.

Cite this