Video Pedestrian Re-identification Based on Human-Machine Collaboration

Yanfei Wang, Zhiwen Yu, Fan Yang, Liang Wang, Bin Guo

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

Abstract

The purpose of pedestrian re-identification is to find pedestrian targets from many real surveillance videos. It has multiple realistic application scenarios such as criminal search, intelligent security, and cross-camera tracking. However, the current stage of pedestrian re-identification faces many challenges, including blurring of surveillance video, changes in surveillance angles, changes in pedestrian posture, and pedestrian occlusion. Although the existing research methods have a good performance on some datasets, there is still a big gap from the practical application. Taking into account the advanced intelligence, flexibility, and adaptability of human beings in the face of complex problems and environmental changes, this paper attempts to establish a model based on human-machine collaboration, in order to improve the accuracy and enhance the practicability. Along this line, we first construct a new human-machine collaboration video pedestrian re-identification model (HMRM) and design the task allocation strategies and result fusion strategies accordingly. Then, based on the YOLOv3 object detection algorithm and the ResNet-50 network structure, we perform the pedestrian detection part and the pedestrian re-identification part respectively. Moreover, since HMRM allocates human-machine tasks based on overlapping thresholds, we do exploratory experiments on human workload, overlapping thresholds, and model accuracy. Finally, based on pyqt5 and multi-threading technology, a human-machine collaboration video pedestrian re-identification interface is developed. Experiments on the public datasets show that HMRM is superior to other pedestrian re-identification approaches.

Original languageEnglish
Title of host publicationComputer Supported Cooperative Work and Social Computing - 15th CCF Conference, Chinese CSCW 2020, Revised Selected Papers
EditorsYuqing Sun, Dongning Liu, Hao Liao, Hongfei Fan, Liping Gao
PublisherSpringer Science and Business Media Deutschland GmbH
Pages410-423
Number of pages14
ISBN (Print)9789811625398
DOIs
StatePublished - 2021
Event15th CCF Conference on Computer Supported Cooperative Work and Social Computing, Chinese CSCW 2020 - Shenzhen, China
Duration: 7 Nov 20209 Nov 2020

Publication series

NameCommunications in Computer and Information Science
Volume1330 CCIS
ISSN (Print)1865-0929
ISSN (Electronic)1865-0937

Conference

Conference15th CCF Conference on Computer Supported Cooperative Work and Social Computing, Chinese CSCW 2020
Country/TerritoryChina
CityShenzhen
Period7/11/209/11/20

Keywords

  • Deep learning
  • Human-machine collaboration
  • Pedestrian detection
  • Pedestrian re-identification

Fingerprint

Dive into the research topics of 'Video Pedestrian Re-identification Based on Human-Machine Collaboration'. Together they form a unique fingerprint.

Cite this