Variational context-deformable convnets for indoor scene parsing

Zhitong Xiong, Yuan Yuan, Nianhui Guo, Qi Wang

Research output: Contribution to journalConference articlepeer-review

60 Scopus citations

Abstract

Context information is critical for image semantic segmentation. Especially in indoor scenes, the large variation of object scales makes spatial-context an important factor for improving the segmentation performance. Thus, in this paper, we propose a novel variational context-deformable (VCD) module to learn adaptive receptive-field in a structured fashion. Different from standard ConvNets, which share fixed-size spatial context for all pixels, the VCD module learns a deformable spatial-context with the guidance of depth information: depth information provides clues for identifying real local neighborhoods. Specifically, adaptive Gaussian kernels are learned with the guidance of multi-modal information. By multiplying the learned Gaussian kernel with standard convolution filters, the VCD module can aggregate flexible spatial context for each pixel during convolution. The main contributions of this work are as follows: 1) a novel VCD module is proposed, which exploits learnable Gaussian kernels to enable feature learning with structured adaptive-context; 2) variational Bayesian probabilistic modeling is introduced for the training of VCD module, which can make it continuous and more stable; 3) a perspective-aware guidance module is designed to take advantage of multi-modal information for RGB-D segmentation. We evaluate the proposed approach on three widely-used datasets, and the performance improvement has shown the effectiveness of the proposed method.

Original languageEnglish
Article number9156787
Pages (from-to)3991-4001
Number of pages11
JournalProceedings of the IEEE Computer Society Conference on Computer Vision and Pattern Recognition
DOIs
StatePublished - 2020
Event2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition, CVPR 2020 - Virtual, Online, United States
Duration: 14 Jun 202019 Jun 2020

Fingerprint

Dive into the research topics of 'Variational context-deformable convnets for indoor scene parsing'. Together they form a unique fingerprint.

Cite this