Variational autoencoders for hyperspectral unmixing with endmember variability

Shuaikai Shi, Min Zhao, Lijun Zhang, Jie Chen

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

12 Scopus citations

Abstract

Spectral signatures are usually affected by variations in environmental conditions. The spectral variability is thus one of the most important and challenging problems to be addressed in hyperspectral unmixing. Generally, it is a non-trivial task to model the endmember variability, and existing spectral unmixing methods that address the spectral variability have different limitations. This paper presents a variational autoencoder (VAE) framework for hyperspectral unmixing accounting for the endmember variability. The endmembers are generated using the posterior distributions of the latent variables to describe their variability in the image. Compared with other existing distribution based methods, the proposed method is able to fit an arbitrary distribution of endmembers for each material through the representation capacity of deep neural networks. Evaluated with both synthetic and real datasets, the proposed method shows superior unmixing results compared with other state-of-the-art unmixing methods.

Original languageEnglish
Title of host publication2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Proceedings
PublisherInstitute of Electrical and Electronics Engineers Inc.
Pages1875-1879
Number of pages5
ISBN (Electronic)9781728176055
DOIs
StatePublished - 2021
Event2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021 - Virtual, Toronto, Canada
Duration: 6 Jun 202111 Jun 2021

Publication series

NameICASSP, IEEE International Conference on Acoustics, Speech and Signal Processing - Proceedings
Volume2021-June
ISSN (Print)1520-6149

Conference

Conference2021 IEEE International Conference on Acoustics, Speech, and Signal Processing, ICASSP 2021
Country/TerritoryCanada
CityVirtual, Toronto
Period6/06/2111/06/21

Keywords

  • Endmember variability
  • Hyperspectral imaging
  • Spectral unmixing
  • Variational autoencoders

Fingerprint

Dive into the research topics of 'Variational autoencoders for hyperspectral unmixing with endmember variability'. Together they form a unique fingerprint.

Cite this