Unsupervised large graph embedding

Feiping Nie, Wei Zhu, Xuelong Li

Research output: Contribution to conferencePaperpeer-review

142 Scopus citations

Abstract

There are many successful spectral based unsupervised dimensionality reduction methods, including Laplacian Eigenmap (LE), Locality Preserving Projection (LPP), Spectral Regression (SR), etc. LPP and SR are two different linear spectral based methods, however, we discover that LPP and SR are equivalent, if the symmetric similarity matrix is doubly stochastic, Positive Semi-Definite (PSD) and with rank p, where p is the reduced dimension. The discovery promotes us to seek low-rank and doubly stochastic similarity matrix, we then propose an unsupervised linear dimensionality reduction method, called Unsupervised Large Graph Embedding (ULGE). ULGE starts with similar idea as LPP, it adopts an efficient approach to construct similarity matrix and then performs spectral analysis efficiently, the computational complexity can reduce to O(ndm), which is a significant improvement compared to conventional spectral based methods which need O(n2d) at least, where n, d and m are the number of samples, dimensions and anchors, respectively. Extensive experiments on several public available data sets demonstrate the efficiency and effectiveness of the proposed method.

Original languageEnglish
Pages2422-2428
Number of pages7
StatePublished - 2017
Event31st AAAI Conference on Artificial Intelligence, AAAI 2017 - San Francisco, United States
Duration: 4 Feb 201710 Feb 2017

Conference

Conference31st AAAI Conference on Artificial Intelligence, AAAI 2017
Country/TerritoryUnited States
CitySan Francisco
Period4/02/1710/02/17

Fingerprint

Dive into the research topics of 'Unsupervised large graph embedding'. Together they form a unique fingerprint.

Cite this