Unsupervised feature selection with structured graph optimization

Feiping Nie, Wei Zhu, Xuelong Li

Research output: Chapter in Book/Report/Conference proceedingConference contributionpeer-review

309 Scopus citations

Abstract

Since amounts of unlabelled and high-dimensional data needed to be processed, unsupervised feature selection has become an important and challenging problem in machine learning. Conventional embedded unsupervised methods always need to construct the similarity matrix, which makes the selected features highly depend on the learned structure. However real world data always contain lots of noise samples and features that make the similarity matrix obtained by original data can't be fully relied. We propose an unsupervised feature selection approach which performs feature selection and local structure learning simultaneously, the similarity matrix thus can be determined adaptively. Moreover, we constrain the similarity matrix to make it contain more accurate information of data structure, thus the proposed approach can select more valuable features. An efficient and simple algorithm is derived to optimize the problem. Experiments on various benchmark data sets, including handwritten digit data, face image data and biomedical data, validate the effectiveness of the proposed approach.

Original languageEnglish
Title of host publication30th AAAI Conference on Artificial Intelligence, AAAI 2016
PublisherAAAI press
Pages1302-1308
Number of pages7
ISBN (Electronic)9781577357605
StatePublished - 2016
Event30th AAAI Conference on Artificial Intelligence, AAAI 2016 - Phoenix, United States
Duration: 12 Feb 201617 Feb 2016

Publication series

Name30th AAAI Conference on Artificial Intelligence, AAAI 2016

Conference

Conference30th AAAI Conference on Artificial Intelligence, AAAI 2016
Country/TerritoryUnited States
CityPhoenix
Period12/02/1617/02/16

Fingerprint

Dive into the research topics of 'Unsupervised feature selection with structured graph optimization'. Together they form a unique fingerprint.

Cite this