Unified Graph Augmentations for Generalized Contrastive Learning on Graphs

Jiaming Zhuo, Yintong Lu, Hui Ning, Kun Fu, Bingxin Niu, Dongxiao He, Chuan Wang, Yuanfang Guo, Zhen Wang, Xiaochun Cao, Liang Yang

Research output: Contribution to journalConference articlepeer-review

1 Scopus citations

Abstract

In real-world scenarios, networks (graphs) and their tasks possess unique characteristics, requiring the development of a versatile graph augmentation (GA) to meet the varied demands of network analysis. Unfortunately, most Graph Contrastive Learning (GCL) frameworks are hampered by the specificity, complexity, and incompleteness of their GA techniques. Firstly, GAs designed for specific scenarios may compromise the universality of models if mishandled. Secondly, the process of identifying and generating optimal augmentations generally involves substantial computational overhead. Thirdly, the effectiveness of the GCL, even the learnable ones, is constrained by the finite selection of GAs available. To overcome the above limitations, this paper introduces a novel unified GA module dubbed UGA after reinterpreting the mechanism of GAs in GCLs from a message-passing perspective. Theoretically, this module is capable of unifying any explicit GAs, including node, edge, attribute, and subgraph augmentations. Based on the proposed UGA, a novel generalized GCL framework dubbed Graph cOntrastive UnifieD Augmentations (GOUDA) is proposed. It seamlessly integrates widely adopted contrastive losses and an introduced independence loss to fulfill the common requirements of consistency and diversity of augmentation across diverse scenarios. Evaluations across various datasets and tasks demonstrate the generality and efficiency of the proposed GOUDA over existing state-of-the-art GCLs.

Original languageEnglish
JournalAdvances in Neural Information Processing Systems
Volume37
StatePublished - 2024
Event38th Conference on Neural Information Processing Systems, NeurIPS 2024 - Vancouver, Canada
Duration: 9 Dec 202415 Dec 2024

Fingerprint

Dive into the research topics of 'Unified Graph Augmentations for Generalized Contrastive Learning on Graphs'. Together they form a unique fingerprint.

Cite this